New pharmaceutical formulations are being developed all the time, and these include prescription and non-prescription drugs, vaccines, products produced through biotechnology, among other products. If you are interested in studying pharmaceutical formulation science, you will want to become familiar with the different aspects of research that contribute to the development of new drugs.
For a new formulation to be authorized for sale in Canada, it has to successfully undergo a thorough drug review process, which may include animal testing. Recently, a biotech company introduced chemosynthetic liver technology that has the potential to replace animal testing. Here is how the new biotechnology might support drug formulation research.
Chemosynthetic Liver Technology and Biomimicry
The technology has been patented by Empiriko and was developed by a team led by Dr. Mukund Chorghade. Essentially, this team has developed catalysts that act similarly to the group of enzymes that break down drugs in the liver, and this group is known as cytochrome P450.
The basis of this technology is biomimicry or biomimetics. The chemosynthetic livers, or test tube livers, can imitate some of a liver’s processes. Monitoring these processes is an essential part of drug testing. More details about what this entails are provided in the next section.
Metabolic Profiling and Pharmaceutical Research Training
In your pharmaceutical research training, you will need to understand metabolic profiling. This is one way a chemical or new product is tested to determine if it is toxic or will have adverse effects. Typically this test is done by administering the formulation to an animal and then monitoring the molecular by-products, or metabolites, as the liver breaks down the drug.
Profiling metabolites helps pharmaceutical formulation scientists understand many pharmacological processes. Metabolite profiles help identify drug-drug interactions, side effects, toxicity, or if a metabolite counteracts the intended purpose of the new drug. Another possibility is to find that a by-product could be further developed and tested. For example, marketed drugs like cetirizine and fexofenadine are active metabolites that were found to be more favourable than their parent compounds.
Chemosynthetic livers allow scientists to do metabolic profiling more quickly than animal testing, and they have also provided more comprehensive metabolic profiles. The test tube livers are faster because the catalysts speed up processes that would occur more slowly in an animal. Empiriko has also claimed that the correlations established in animal testing are lacking compared to chemosynthetic liver testing.
Tests and More Tests
Part of the foundation of pharmaceutical training in experimental design will help you build a thorough knowledge of basic tests that new formulations must undergo. Tests are an integral part of drug development research because they demonstrate the validity and efficacy of new formulations. Of course, the tests themselves also need to be tested.
The company developing chemosynthetic livers has already done metabolism profiling studies for 50 marketed drugs and new formulations. These tests have shown that their technology could detect the same metabolites as observed in animal and human tests while also providing more thorough metabolite data. While these livers are still in development, they have already made a significant contribution to research related to drug testing.
Expand your career options with the pharmaceutical school.
Contact the Toronto Institute of Pharmaceutical Technology to learn how!